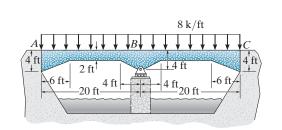
13–1. Determine the moments at A, B, and C by the moment-distribution method. Assume the supports at A and C are fixed and a roller support at B is on a rigid base. The girder has a thickness of 4 ft. Use Table 13–1. E is constant. The haunches are straight.



$$a_A = \frac{6}{20} = 0.3$$
 $a_B = \frac{4}{20} = 0.2$
 $r_A = r_B = \frac{4-2}{2} = 1$

From Table 13–1,

For span *AB*,

 $C_{AB} = 0.622 \qquad C_{BA} = 0.748$ $K_{AB} = 10.06 \qquad K_{BA} = 8.37$ $K_{BA} = \frac{K_{BA}EI_C}{L} = \frac{8.37EI_C}{20} = 0.4185EI_C$ (FEM)_{AB} = -0.1089(8)(20)² = -348.48 k \cdot ft (FEM)_{BA} = 0.0942(8)(20)² = 301.44 k \cdot ft

For span *BC*,

 $C_{BC} = 0.748$ $C_{CB} = 0.622$ $K_{BC} = 8.37$ $K_{CB} = 10.06$ $K_{BC} = 0.4185 E I_C$ (FEM)_{BC} = -301.44 k · ft (FEM)_{CB} = 348.48 k · ft

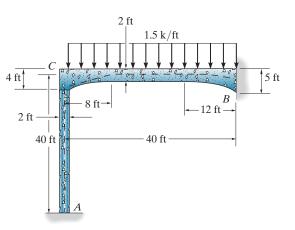
Joint	Α	I	3	С]
Mem.	AB	BA	BC	СВ	
K		0.4185 <i>EI</i> _C	0.4185 <i>EI</i> _C		
DF	0	0.5	0.5	0	
COF	0.622	0.748	0.748	0.622	
FEM	-348.48	301.44	-301.44	348.48	
		0	0		
$\sum M$	-348.48	301.44	-301.44	348.48 k • ft	Ans.

 $8 \, k/ft$

13–2. Solve Prob. 13–1 using the slope-deflection equations.

	6 4	$\begin{array}{c} A \\ 4^{\dagger} \text{ft} \\ + \\ 6 \\ 6 \\ 1 \\ 20 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	C 4 ft ft
	$a_A = \frac{6}{20} = 0.3$ $a_B = \frac{4}{20} = 0.2$		
	$r_A = r_B = \frac{4-2}{2} = 1$		
	For span AB,		
	$C_{AB} = 0.622$ $C_{BA} = 0.748$	M _{BA}	R
	$K_{AB} = 10.06$ $K_{BA} = 8.37$		Mec
	$K_{BA} = \frac{K_{BA} E I_C}{L} = \frac{8.37 E I_C}{20} = 0.4185 E I_C$		
	$(\text{FEM})_{AB} = -0.1089(8)(20)^2 = -348.48 \text{ k} \cdot \text{ft}$	7	
	$(\text{FEM})_{BA} = 0.0942(8)(20)^2 = 301.44 \text{ k} \cdot \text{ft}$		
	For span <i>BC</i> ,		
	$C_{BC} = 0.748$ $C_{CB} = 0.622$		
	$K_{BC} = 8.37$ $K_{CB} = 10.06$		
	$K_{BC} = 0.4185 E I_C$		
	$(\text{FEM})_{BC} = -301.44 \text{ k} \cdot \text{ft}$		
	$(\text{FEM})_{CB} = 348.48 \text{ k} \cdot \text{ft}$		
	$M_N = K_N [\theta_N + C_N \theta_F - \psi (1 + C_N)] + (\text{FEM})_N$		
	$M_{AB} = 0.503 EI(0 + 0.622\theta_B -) - 348.48$		
	$M_{AB} = 0.312866 EI\theta_B - 348.8$	(1)	
	$M_{BA} = 0.4185 EI(\theta_B + 0 - 0) + 301.44$		
	$M_{BA} = 0.4185 EI\theta_B + 301.44$	(2)	
	$M_{BC} = 0.4185 EI(\theta_B + 0 - 0) - 301.44$		
	$M_{BC} = 0.4185 E I \theta_B - 301.44$	(3)	
	$M_{CB} = 0.503 EI(0 + 0.622\theta_B - 0) + 348.48$		
	$M_{CB} = 0.312866 EI\theta_B - 348.48$	(4)	
	Equilibrium.		
	$M_{BA} + M_{BC} = 0$	(5)	
	Solving Eqs. 1–5:		
	$\theta_B = 0$		
	$M_{AB} = -348 \mathrm{k} \cdot \mathrm{ft}$	Ans.	
	$M_{BA} = 301 \mathrm{k} \cdot \mathrm{ft}$	Ans.	
	$M_{BC} = -301 \text{ k} \cdot \text{ft}$	Ans.	
	$M_{CB} = 348 \mathrm{k} \cdot \mathrm{ft}$	Ans.	
- I			

13–3. Apply the moment-distribution method to determine the moment at each joint of the parabolic haunched frame. Supports A and B are fixed. Use Table 13–2. The members are each 1 ft thick. E is constant.



The necessary data for member BC can be found from Table 13–2.

Here,

$$a_C = \frac{8}{40} = 0.2$$
 $a_B = \frac{12}{40} = 0.3$ $r_C = \frac{4-2}{2} = 1.0$ $r_B = \frac{5-2}{2} = 1.5$

Thus,

$$C_{CB} = 0.735$$
 $C_{BC} = 0.589$ $K_{CB} = 7.02$ $K_{BC} = 8.76$

Then,

$$K_{CB} = \frac{K_{CB}EI_C}{L_{BC}} = \frac{7.02E\left[\frac{1}{12}(1)(2^3)\right]}{40} = 0.117E$$

The fixed end moment are given by

 $(\text{FEM})_{CB} = -0.0862(1.5)(40^2) = -206.88 \text{ k} \cdot \text{ft}$

$$(\text{FEM})_{BC} = 0.1133(1.5)(40^2) = 271.92 \text{ k} \cdot \text{ft}$$

Since member AC is prismatic

$$K_{CA} = \frac{4EI}{L_{AC}} = \frac{4E\left[\frac{1}{12}(1)(2)^3\right]}{40} = 0.0667E$$

Tabulating these data;

Joint	A	(В	
Mem	AC	CA	CB	BC
K		0.0667E	0.117 <i>E</i>	
DF	0	0.3630	0.6370	0
COF	0	0.5	0.735	0
FEM			-206.88	
Dist.		, 75.10	131.78 🔨	271.92
CO	37.546			96.86
$\sum M$	37.546	75.10	-75.10	368.78

Thus,

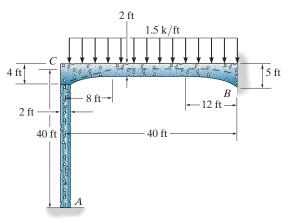
$$M_{AC} = 37.55 \text{ k} \cdot \text{ft} = 37.6 \text{ k} \cdot \text{ft}$$
 Ans

 $M_{CA} = 75.10 \text{ k} \cdot \text{ft} = 75.1 \text{ k} \cdot \text{ft}$
 Ans

 $M_{CB} = -75.10 \text{ k} \cdot \text{ft} = -75.1 \text{ k} \cdot \text{ft}$
 Ans

 $M_{BC} = 368.78 \text{ k} \cdot \text{ft} = 369 \text{ k} \cdot \text{ft}$
 Ans

*13-4. Solve Prob. 13-3 using the slope-deflection equations.



The necessary data for member BC can be found from Table 13.2.

Here,

$$a_C = \frac{8}{40} = 0.2$$
 $a_B = \frac{12}{40} = 0.3$ $r_C = \frac{4-2}{2} = 1.0$ $r_B = \frac{5-2}{2} = 1.5$

Thus,

$$C_{CB} = 0.735$$
 $C_{BC} = 0.589$ $K_{CB} = 7.02$ $K_{BC} = 8.76$

Then,

$$K_{CB} = \frac{K_{CB}EI_C}{L_{BC}} = \frac{7.02E\left[\frac{1}{12}(1)(2)^3\right]}{40} = 0.117E$$
$$K_{BC} = \frac{K_{BC}EI_C}{L_{BC}} = \frac{8.76E\left[\frac{1}{12}(1)(2)^3\right]}{40} = 0.146E$$

The fixed end moment are given by

$$(\text{FEM})_{CB} = -0.0862(1.5)(40)^2 = -206.88 \text{ k} \cdot \text{ft}$$

$$(\text{FEM})_{BC} = 0.1133(1.5)(40)^2 = 271.92 \text{ k} \cdot \text{ft}$$

For member BC, applying Eq. 13-8,

$$M_N = K_N [\theta_N + C_N \theta_F - \psi(HC_N)] + (FEM)_N$$

$$M_{CB} = 0.117E[\theta_c + 0.735(0) - 0(1 + 0.735)] + (-206.88) = 0.117E\theta_c - 206.88$$
(1)

$$M_{BC} = 0.146E[0 + 0.589\theta_C - 0(1 + 0.589)] + 271.92 = 0.085994E\theta_C + 271.92$$
(2)

Since member AC is prismatic, Eq. 11–8 is applicable

$$M_{N} = 2EK(2\theta_{N} + \theta_{F} - 3\psi) + (FEM)_{N}$$
$$M_{AC} = 2E\left[\frac{\frac{1}{12}(1)(2)^{3}}{40}\right][2(0) + \theta_{C} - 3(0)] + 0 = 0.03333E\theta_{C}$$
(3)
$$\left[\frac{1}{(1)(2)^{3}}\right]$$

$$M_{CA} = 2E \left[\frac{12^{(1)(2)}}{40} \right] [2\theta_C + 0 - 3(0)] + 0 = 0.06667 E\theta_C$$
(4)

Moment equilibrium of joint *C* gives

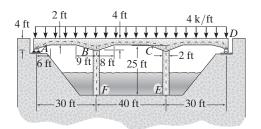
 $M_{CA} + M_{CB} = 0$

 $0.06667 E\theta_C + 0.117 E\theta_C - 206.88 = 0$

$$\theta_C = \frac{1126.39}{E}$$

13–4. Continued		
Substitute this result into Eqs. (1) to (4),		
$M_{CB} = -75.09 \mathrm{k} \cdot \mathrm{ft} = -75.1 \mathrm{k} \cdot \mathrm{ft}$	Ans.	
$M_{BC} = 368.78 \text{ k} \cdot \text{ft} = 369 \text{ k} \cdot \text{ft}$	Ans.	
$M_{AC} = 37.546 \mathrm{k} \cdot \mathrm{ft} = 37.5 \mathrm{k} \cdot \mathrm{ft}$	Ans.	
$M_{CA} = 75.09 \mathrm{k} \cdot \mathrm{ft} = 75.1 \mathrm{k} \cdot \mathrm{ft}$	Ans.	

13–5. Use the moment-distribution method to determine the moment at each joint of the symmetric bridge frame. Supports at F and E are fixed and B and C are fixed connected. Use Table 13–2. Assume E is constant and the members are each 1 ft thick.



٦

For span AB,

$$a_A = \frac{6}{30} = 0.2$$
 $a_B = \frac{9}{30} = 0.3$
 $r_A = r_B = \frac{4-2}{2} = 1$

From Table 13–2,

$$C_{AB} = 0.683 \qquad C_{BA} = 0.598$$

$$k_{AB} = 6.73 \qquad k_{BA} = 7.68$$

$$K_{AB} = \frac{6.73EI}{30} = 0.2243EI$$

$$K_{BA} = \frac{7.68EI}{30} = 0.256EI$$

$$K_{BA} = 0.256EI[1 - (0.683)(0.598)]$$

$$= 0.15144EI$$

 $(\text{FEM})_{AB} = -0.0911(4)(30)^2 = -327.96 \text{ k} \cdot \text{ft}$

$$(\text{FEM})_{BA} = 0.1042(4)(30)^2 = 375.12 \text{ k} \cdot \text{ft}$$

13-5. Continued For span *CD*, $C_{DC} = 0.683$ $C_{CD} = 0.598$ $K_{DC} = 6.73$ $K_{CD} = 7.68$ $K_{DC} = 0.2243 EI$ $K_{CD} = 0.256 EI$ $K_{CD} = 0.15144 EI$ $(FEM)_{CD} = -375.12 \text{ k} \cdot \text{ft}$ $(\text{FEM})_{DC} = 327.96 \text{ k} \cdot \text{ft}$ For span BC, $a_B = a_C = \frac{8}{40} = 0.2$ $r_A = r_{CB} = \frac{4-2}{2} = 1$ From Table 13–2, $C_{BC} = C_{CB} = 0.619$ $k_{BC} = k_{CB} = 6.41$ $K_{BC} = K_{CB} = \frac{6.41 EI}{40} = 0.16025 EI$ $(\text{FEM})_{BC} = -0.0956(4)(40)^2 = -611.84 \text{ k} \cdot \text{ft}$ $(\text{FEM})_{CB} = 611.84 \text{ k} \cdot \text{ft}$ For span BF, $C_{BF} = 0.5$ $K_{BF} = \frac{4EI}{25} = 0.16EI$ $(\text{FEM})_{BF} = (\text{FEM})_{FB} = 0$ For span *CE*, $C_{CE} = 0.5$ $K_{CE} = 0.16EI$ $(\text{FEM})_{CE} = (\text{FEM})_{EC} = 0$

13–5. Continued

Joint	Α	F		В			С		Е	D
Member	AB	FB	BF	BA	BC	СВ	CD	CE	EC	DC
DF	1	0	0.3392	0.3211	0.3397	0.3397	0.3211	0.3392	0	1
COF	0.683		0.5	0.598	0.619	0.619	0.598	0.5		0.683
FEM	-327.96			375.12	-611.84	611.84	-375.12			332.96
	327.96		80.30	76.01	80.41	-80.41	-76.01	-80.30		-327.96
		40.15		224.00	-49.77	49.77	-224.00		-40.15	
			-59.09	-55.95	-59.19	59.19	55.95	59.19		
		-29.55			36.64	-36.64			29.55	
			-12.42	-11.77	-12.45	12.45	11.77	12.42		
		-6.21			7.71	-7.71			6.21	
			-2.61	-2.48	-2.62	2.62	2.48	2.61		
		-1.31			1.62	-1.62			1.31	
			-0.55	-0.52	-0.55	0.55	0.52	0.55		
		-0.27			0.34	-0.34			-0.27	
			-0.11	-0.11	-0.12	0.12	0.11	0.11		
		-0.5			0.07	-0.07			0.05	
			-0.03	-0.02	-0.02	0.02	0.02	0.03		
Σ	0	2.76	5.49	604	-609	609	-604	5.49	-2.76	0

k•ft Ans.

13-6. Solve Prob. 13-5 using the slope-deflection equations.

See Prob. 13–19 for the tabulated data

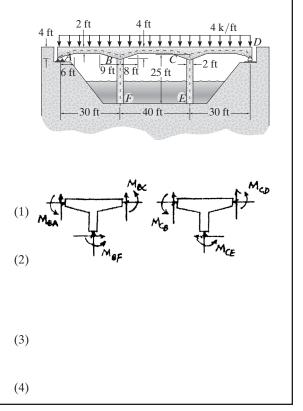
 $M_N = K_N [\theta_N + C_N \theta_F - \psi (1 - C_N)] + (\text{FEM})_N$

For span AB,

$$\begin{split} M_{AB} &= 0.2243 EI(\theta_A + 0.683\theta_B - 0) - 327.96\\ M_{AB} &= 0.2243 EI\theta_A + 0.15320 EI\theta_B - 327.96\\ M_{BA} &= 0.256 EI(\theta_B + 0.598\theta_A - 0) + 375.12\\ M_{BA} &= 0.256 EI\theta_B + 0.15309 EI\theta_A + 375.12 \end{split}$$

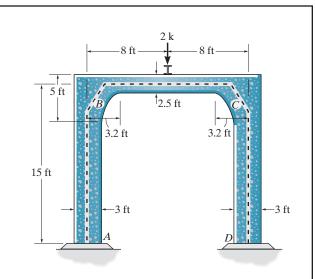
For span BC,

$$\begin{split} M_{BC} &= 0.16025 EI(\theta_B + 0.619\theta_C - 0) - 611.84 \\ M_{BC} &= 0.16025 EI\theta_B + 0.099194 EI\theta_C - 611.84 \\ M_{CB} &= 0.16025 EI(\theta_C + 0.619\theta_B - 0) + 611.84 \\ M_{CB} &= 0.16025 EI\theta_C + 0.099194 EI\theta_B + 611.84 \end{split}$$



13–6. Continued	
For span <i>CD</i> ,	
$M_{CD} = 0.256 EI(\theta_C + 0.598\theta_D - 0) - 375.12$	
$M_{CD} = 0.256 EI\theta_C + 0.15309 EI\theta_D - 375.12$	(5)
$M_{DC} = 0.2243 EI(\theta_D + 0.683\theta_C - 0) + 327.96$	
$M_{DC} = 0.2243 EI\theta_D + 0.15320 EI\theta_C + 327.96$	(6)
For span <i>BF</i> ,	
$M_{BF} = 2E\left(\frac{1}{25}\right)(2\theta_B + 0 - 0) + 0$	
$M_{BF} = 0.16 E I \theta_B$	(7)
$M_{FB} = 2E\left(\frac{1}{25}\right)(2(0) + \theta_B - 0) + 0$	
$M_{FB} = 0.08 E I \theta_B$	(8)
For span <i>CE</i> ,	
$M_{CE} = 2E\left(\frac{1}{25}\right)(2\theta_C + 0 - 0) + 0$	
$M_{CE} = 0.16 E I \theta_C$	(9)
$M_{EC} = 2E\left(\frac{1}{25}\right)(2(0) + \theta_C - 0) + 0$	
$M_{EC} = 0.08 E I \theta_C$	(10)
Equilibrium equations:	
$M_{AB} = 0$	(11)
$M_{DC} = 0$	(12)
$M_{BA} + M_{BC} + M_{BF} = 0$	(13)
$M_{CB} + M_{CE} + M_{CD} = 0$	(14)
Solving Eq. 1–14,	
$\theta_A = \frac{1438.53}{EI}$ $\theta_B = \frac{34.58}{EI}$ $\theta_C = \frac{-34.58}{EI}$ $\theta_D = \frac{-1438.53}{EI}$	
$M_{AB} = 0$	Ans.
$M_{BA} = 604 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{BC} = -610 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{BF} = 5.53 \text{ k} \cdot \text{ft}$	Ans.
$M_{FB} = 2.77 \text{ k} \cdot \text{ft}$	Ans.
$M_{CB} = 610 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{CD} = -604 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{CE} = -5.53 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{EC} = -2.77 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{DC} = 0$	Ans.

13–7. Apply the moment-distribution method to determine the moment at each joint of the symmetric parabolic haunched frame. Supports A and D are fixed. Use Table 13–2. The members are each 1 ft thick. E is constant.



$$a_B = a_C = \frac{3.2}{16} = 0.2$$

 $r_B = r_C = \frac{5 - 2.5}{2.5} = 1$

 $C_{BC} = C_{CB} = 0.619$

$$k_{BC} = k_{CB} = 6.41$$

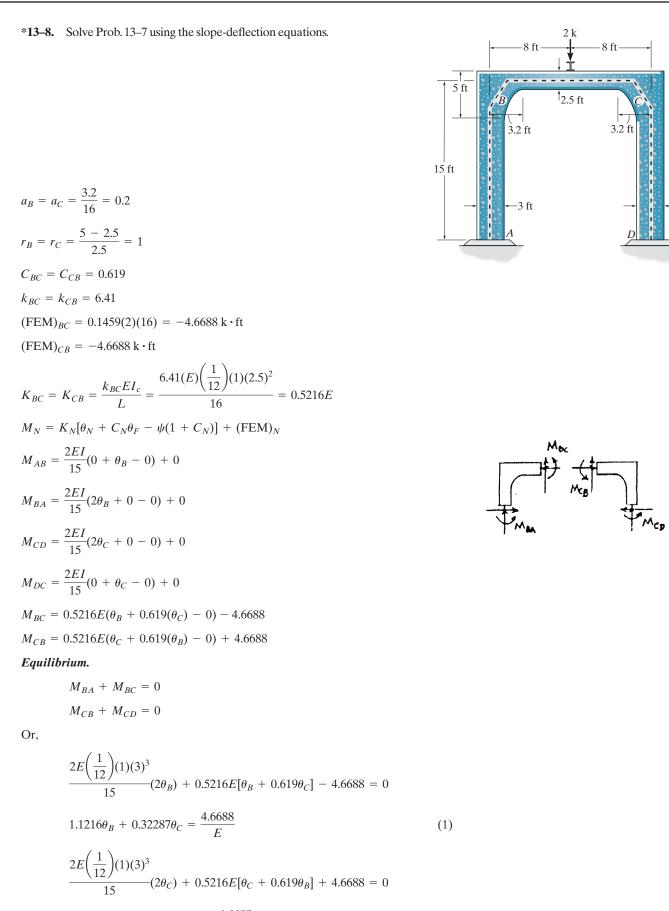
 $(\text{FEM})_{BC} = -0.1459(2)(16) = -4.6688 \text{ k} \cdot \text{ft}$ $(\text{FEM})_{CB} = 4.6688 \text{ k} \cdot \text{ft}$

$$K_{BC} = K_{CB} = \frac{k_{BC} E I_C}{L} = \frac{6.41(E) \left(\frac{1}{12}\right) (1) (2.5)^3}{16} = 0.5216E$$
$$K_{BA} = K_{CO} = \frac{4EI}{L} = \frac{4E \left[\frac{1}{12} (1) (3)^3\right]}{15} = 0.6E$$
$$(DF)_{BA} = (DF)_{CD} = \frac{0.6E}{0.5216E + 0.6E} = 0.535$$
$$(DF)_{BC} = (DF)_{CB} = 0.465$$

Joint	A	В		(2	D
Member	AB	BA	BC	CB	CD	DC
DF	0	0.535	0.465	0.465	0.535	0
COF	0.5	0.5	0.619	0.619	0.5	0.5
FEM			-4.6688	4.6688		
		2.498	2.171	-2.171	-2498	
	1.249		-1.344	1.344		-1.249
		0.7191	0.6249	-0.6249	-0.7191	
	0.359		-0.387	0.387		-0.359
		0.207	0.180	-0.180	-0.207	
	0.103		-0.111	0.111		-0.103
		0.059	0.052	-0.052	-0.059	
	0.029		-0.032	0.032		-0.029
		0.017	0.015	-0.015	-0.017	
	0.008		-0.009	0.009		-0.008
		0.005	0.004	-0.004	-0.005	
	0.002		-0.002	0.002		0.002
		0.001	0.001	-0.001	-0.001	
Σ	1.750	3.51	-3.51	3.51	-3.51	−1.75 k • ft

Ans.

-3 ft



$$1.1216\theta_C + 0.32287\theta_B = -\frac{4.6688}{E} \tag{2}$$

13-8. Continued

Solving Eqs. 1 and 2:

$\theta_B = -\theta_C = \frac{5.84528}{E}$	
$M_{AB} = 1.75 \text{ k} \cdot \text{ft}$	Ans.
$M_{BA} = 3.51 \text{ k} \cdot \text{ft}$	Ans.
$M_{BC} = -3.51 \text{ k} \cdot \text{ft}$	Ans.
$M_{CB} = 3.51 \text{ k} \cdot \text{ft}$	Ans.
$M_{CD} = -3.51 \mathrm{k} \cdot \mathrm{ft}$	Ans.
$M_{DC} = -1.75 \mathrm{k} \cdot \mathrm{ft}$	Ans.

13–9. Use the moment-distribution method to determine the moment at each joint of the frame. The supports at A and C are pinned and the joints at B and D are fixed connected. Assume that E is constant and the members have a thickness of 1 ft. The haunches are straight so use Table 13–1.

For span BD,

$$a_B = a_D = \frac{6}{30} = 0.2$$

 $r_A = r_B = \frac{2.5 - 1}{1} = 1.5$

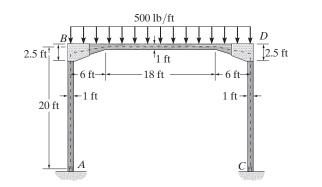
From Table 13–1,

 $C_{BD} = C_{DB} = 0.691$ $k_{BD} = k_{DB} = 9.08$ $K_{BD} = K_{DB} = \frac{kEI_C}{L} = \frac{9.08EI}{30} = 0.30267EI$ (FEM)_{BD} = -0.1021(0.5)(30²) = -45.945 k \cdot ft (FEM)_{DB} = 45.945 k \cdot ft

For span *AB* and *CD*,

$$K_{BA} = K_{DC} = \frac{3EI}{20} = 0.15EI$$

(FEM)_{AB} = (FEM)_{BA} = (FEM)_{DC} = (FEM)_{CD} = 0

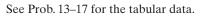


13–9. Continued

Joint	Α	В		Ι	D	
Mem.	AB	BA	BD	DB	DC	CD
K		0.15 <i>EI</i>	0.3026 <i>EI</i>	0.3026 <i>EI</i>	0.15 <i>EI</i>	
DF	1	0.3314	0.6686	0.6686	0.3314	1
COF		0	0.691	0.691	0	
FEM			-45.95	45.95		
		15.23	30.72	-30.72	-15.23	
			-21.22	21.22		
		7.03	14.19	-14.19	-7.03	
			-9.81	9.81		
		3.25	6.56	-6.56	-3.25	
			-4.53	4.53		
		1.50	3.03	-3.03	-1.50	
			-2.09	2.09		
		0.69	1.40	-1.40	-0.69	
			-0.97	0.97		
		0.32	0.65	-0.65	-0.32	
			-0.45	0.45		
		0.15	0.30	-0.30	-0.15	
			-0.21	0.21		
		0.07	0.14	-0.14	-0.07	
			-0.10	0.10		
		0.03	0.06	-0.06	-0.03	
			-0.04	0.04		
		0.01	0.03	-0.03	-0.01	
$\sum M$	0	28.3	-28.3	28.3	-28.3	0 k · ft

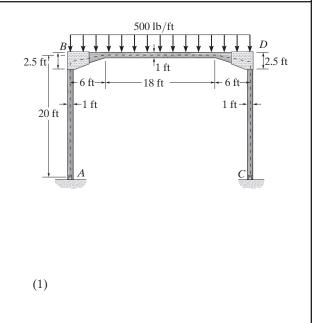
Ans.

13–10. Solve Prob. 13–9 using the slope-deflection equations.



For span AB,

$$M_N = 3E \frac{I}{L} [\theta_N - \psi] + (\text{FEM})_N$$
$$M_{BA} = 3E \left(\frac{I}{20}\right) (\theta_B - 0) + 0$$
$$M_{BA} = \frac{3EI}{20} \theta_B$$



13-10. Continued

For span *BD*,

$$M_{N} = K_{N}[\theta_{N} + C_{N}\theta_{F} - \psi(1 + C_{N})] + (FEM)_{N}$$

$$M_{BD} = 0.30267EI(\theta_{B} + 0.691\theta_{D} - 0) - 45.945$$

$$M_{BD} = 0.30267EI\theta_{B} + 0.20914EI\theta_{D} - 45.945$$

$$M_{DB} = 0.30267EI(\theta_{D} + 0.691\theta_{B} - 0) + 45.945$$

$$M_{DB} = 0.30267EI\theta_{D} + 0.20914EI\theta_{B} - 45.945$$
(3)

For span DC,

$$M_{N} = 3E \frac{I}{L} [\theta_{N} - \psi] + (\text{FEM})_{N}$$
$$M_{DC} = 3E \left(\frac{I}{20}\right) (\theta_{D} - 0) + 0$$
$$M_{DC} = \frac{3EI}{20} \theta_{D}$$
(4)

Equilibrium equations,

$$M_{BA} + M_{BD} = 0 \tag{5}$$
$$M_{DB} + M_{DC} = 0 \tag{6}$$

Solving Eqs. 1-6:

$$\theta_{B} = \frac{188.67}{EI} \qquad \theta_{D} = -\frac{188.67}{EI}$$

$$M_{BA} = 28.3 \text{ k} \cdot \text{ft}$$

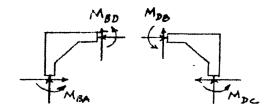
$$M_{BD} = -28.3 \text{ k} \cdot \text{ft}$$

$$M_{DB} = 28.3 \text{ k} \cdot \text{ft}$$

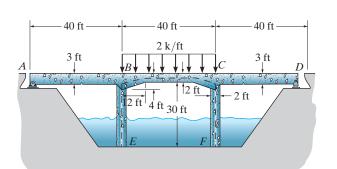
$$M_{DC} = -28.3 \text{ k} \cdot \text{ft}$$

$$M_{DC} = -28.3 \text{ k} \cdot \text{ft}$$

$$M_{AB} = M_{CD} = 0$$
Ans.



13–11. Use the moment-distribution method to determine the moment at each joint of the symmetric bridge frame. Supports F and E are fixed and B and C are fixed connected. The haunches are straight so use Table 13–2. Assume E is constant and the members are each 1 ft thick.



The necessary data for member BC can be found from Table 13–1.

Here,

$$a_B = a_C = \frac{12}{40} = 0.3$$

 $r_B = r_C = \frac{4-2}{2} = 1.0$

Thus,

$$C_{BC} = C_{CB} = 0.705$$
 $K_{BC} = K_{CB} = 10.85$

Since the stimulate and loading are symmetry, Eq. 13–14 applicable.

Here,

$$K_{BC} \frac{K_{BC} E I_C}{L_{BC}} = \frac{10.85 E \left[\frac{1}{12}(1)(2^3)\right]}{40} = 0.18083 E$$
$$K_{BC}' = K_{BC}(1 - C_{BC}) = 0.18083 E (1 - 0.705) = 0.05335 E$$

The fixed end moment are given by

$$(\text{FEM})_{BC} = -0.1034(2)(40^2) = -330.88 \text{ k} \cdot \text{ft}$$

Since member AB and BE are prismatic

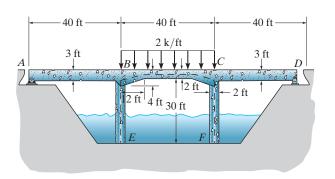
$$K_{BE} = \frac{4EI}{L_{BA}} = \frac{4E\left[\frac{1}{12}(1)(2^3)\right]}{30} = 0.08889E$$
$$K_{BA} = \frac{3EI}{L_{BA}} = \frac{3E\left[\frac{1}{12}(1)(3^3)\right]}{40} = 0.16875E$$

Tabulating these data,

Joint	A		E		
Member	AB	BA	BC	BE	EB
K		0.16875 <i>E</i>	0.05335E	0.08889 <i>E</i>	
DF	1	0.5426	0.1715	0.2859	0
COF		0	0.705	0.5	
FEM			-330.88		
Dist		179.53	56.75	94.60	
СО					47.30
$\sum M$		179.53	-274.13	94.60	47.30

13-11. Continued Thus, $M_{CD} = M_{BA} = 179.53 \text{ k} \cdot \text{ft} = 180 \text{ k} \cdot \text{ft}$ Ans. $M_{CF} = M_{BE} = 94.60 \text{ k} \cdot \text{ft} = 94.6 \text{ k} \cdot \text{ft}$ Ans. $M_{CB} = M_{BC} = -274.13 \text{ k} \cdot \text{ft} = 274 \text{ k} \cdot \text{ft}$ Ans. $M_{FC} = M_{EB} = 47.30 \text{ k} \cdot \text{ft} = 47.3 \text{ k} \cdot \text{ft}$ Ans.

***13–12.** Solve Prob. 13–11 using the slope-deflection equations.



The necessary data for member BC can be found from Table 13–1

Here,

$$a_B = a_C = \frac{12}{40} = 0.3$$
 $r_B = r_C = \frac{4-2}{2} = 1.0$

Thus,

$$C_{BC} = C_{CB} = 0.705$$
 $K_{BC} = K_{CB} = 10.85$

Then,

$$K_{BC} = K_{CB} = \frac{K_{BC} E I_C}{L_{BC}} = \frac{10.85 E \left[\frac{1}{12}(1)(2^3)\right]}{40} = 0.1808 E$$

The fixed end moment's are given by

$$(\text{FEM})_{BC} = -0.1034(2)(40^2) = -330.88 \text{ k} \cdot \text{ft.}$$

For member BC, applying Eq. 13-8. Here, due to symatry,

$$\theta_{C} = -\theta_{B}$$

$$M_{N} = K_{N}[\theta_{N} + C_{N}\theta_{F} - \psi(HC_{N})] + (FEM)_{N}$$

$$M_{BC} = 0.1808E[\theta_{B} + 0.705(-\theta_{B}) - 0(1 + 0.705)] + (-330.88)$$

$$= 0.053346E\theta_{B} - 330.88$$

(1)

13–12. Continued

For prismatic member BE, applying Eq. 11-8.

$$M_{N} = 2EK(2\theta_{N} + \theta_{F} - 3\psi) + (FEM)_{N}$$
$$M_{BE} = 2E\left[\frac{\frac{1}{12}(1)(3)^{3}}{30}\right][2\theta_{B} + 0 - 3(0)] + 0 = 0.08889E\theta_{B}$$
(2)

$$M_{EB} = 2E \left[\frac{\frac{1}{12} (1)(2)^3}{30} \right] [2(0) + \theta_B - 3(0) + 0] = 0.04444 E \theta_B$$
(3)

For prismatic member AB, applying Eq. 11–10

$$M_N = 3EK(\theta_N - \psi) + (FEM)_N$$
$$M_{BA} = 3E\left[\frac{\frac{1}{12}(1)(2)^3}{40}\right](\theta_B - 0) + 0 = 0.16875E\theta_B$$
(4)

Moment equilibrium of joint B gives

$$M_{BA} + M_{BC} + M_{BE} = 0$$

 $0.16875 E\theta_B + 0.053346 E\theta_B - 330.88 + 0.08889 E\theta_B = 0$

$$\theta_B = \frac{1063.97}{E}$$

Substitute this result into Eq. (1) to (4)

$$M_{CB} = M_{BC} = -274.12 \text{ k} \cdot \text{ft} = -274 \text{ k} \cdot \text{ft}$$
 Ans.

$$M_{CF} = M_{BE} = 94.58 \text{ k} \cdot \text{ft} = 94.6 \text{ k} \cdot \text{ft}$$
 Ans.

$$M_{FC} = M_{EB} = 47.28 \text{ k} \cdot \text{ft} = 47.3 \text{ k} \cdot \text{ft}$$
 Ans.

$$M_{CD} = M_{BA} = 179.55 \text{ k} \cdot \text{ft} = 180 \text{ k} \cdot \text{ft}$$
 Ans.